I M.Tech - I Semester – Regular Examinations - MARCH - 2023

ADVANCED MECHANICS OF SOLIDS (MACHINE DESIGN)

Duration: 3 hours	Max. Marks: 60
Note: 1. This paper contains 4 questions from	4 units of Syllabus. Each unit

carries 15 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

1 a) At a point P, the components are (in kP) $\sigma_{xx} = 1, \sigma_{yy} = -2, \sigma_{zz} = 4$	•	BL L2	CO CO1	Marks 10 M			
components are (in kP $\sigma_{xx} = 1, \sigma_{yy} = -2, \sigma_{zz} = 4$	e rectangular stress	L2	CO1	10 M			
components are (in kP $\sigma_{xx} = 1, \sigma_{yy} = -2, \sigma_{zz} = 4$	•	L2	CO1	10 M			
$\sigma_{xx} = 1, \sigma_{yy} = -2, \sigma_{zz} = 4$	a)						
$\iota_{xy} = \mathcal{L}, \ \iota_{xy} = -\mathcal{I}, \ \iota_{xy} = 1,$		$\tau_{xy} = 2, \ \tau_{xy} = -3, \ \tau_{xy} = 1,$					
Find the principal stresses and check for							
invariance.							
b) Define stress at a	point and derive	L2	CO1	5 M			
differential equation of	f equilibrium.						
OR							
2 a) Explain maximum principle stress criterion.		L2	CO1	7 M			
b) Explain maximum stra	in energy criterion.	L2	CO1	8 M			
UNIT-II							
3 Determine the diameter	L3	CO2	15 M				
subjected to a bending moment M and a torque							
T, according to the several theories of failure.							
Use a factor of safety N.							
OR							

UNIT-IV							
7	A	Steel disc of uniform thickness and of	L3	CO4	15 M		
	dia	meter 900mm is rotating about its axis at					
	300	00 rpm. Determine the radial and					
circumferential stresses at the centre and outer							
radius. The density of the material is 7800 kg/m^3							
	and	Poisson's ratio is 0.3.					
	OR						
8	a)	State the assumptions and limitations in	L3	CO4	5 M		
		Winkler Bach theory for curved beams.					
	b) Find the load carrying capacity of a hook of		L3	CO4	10 M		
	rectangular cross section 100x75mm. The						
	thickness of hook is 75mm, the radius of						
	inner fiber is 150 mm while that of outer						
		fiber is 250mm. The line of action of force					
		passes at a distance of 75 mm from the inner					
		fibers. The allowable stress is 70 N/mm ² .					