I M.Tech - I Semester - Regular Examinations - MARCH - 2023

ADVANCED MECHANICS OF SOLIDS

 (MACHINE DESIGN)Duration: 3 hours
Max. Marks: 60
Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit carries 15 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	At a point P , the rectangular stress components are (in kPa) $\begin{aligned} & \sigma_{x x}=1, \sigma_{y y}=-2, \sigma_{z z}=4 \\ & \tau_{x y}=2, \tau_{x y}=-3, \tau_{x y}=1, \end{aligned}$ Find the principal stresses and check for invariance.	L2	CO1	10 M
	b)	Define stress at a point and derive differential equation of equilibrium.	L2	CO1	5 M
OR					
2	a)	Explain maximum principle stress criterion.	L2	CO1	7 M
	b)	Explain maximum strain energy criterion.	L2	CO1	8 M
UNIT-II					
3		termine the diameter d of a circular shaft jected to a bending moment M and a torque according to the several theories of failure. a factor of safety N .	L3	CO 2	15 M

UNIT-IV					
7	A Steel disc of uniform thickness and of diameter 900mm is rotating about its axis at 3000 rpm. Determine the radial and circumferential stresses at the centre and outer radius. The density of the material is 7800 kg/m and Poisson's ratio is 0.3.	CO4	15 M		
OR					
8	a)	State the assumptions and limitations in Winkler Bach theory for curved beams.	L3	CO4	5 M
b)	Find the load carrying capacity of a hook of rectangular cross section 100x75mm. The thickness of hook is 75mm, the radius of inner fiber is 150 mm while that of outer fiber is 250mm. The line of action of force passes at a distance of 75 mm from the inner fibers. The allowable stress is 70 N/mm	CO4	10 M		

